徕卡显微镜——生物显微镜的产生基础
徕卡显微镜的科研团队为了开发具有更高分辨能力的仪器,必须寻找更短波长6t照明物质以及能对它实现焦焦、控制的“透镜”。以电子光学为作用原理的电子显微镜就是这样一种仪器。所谓电子光学是指研究和利用电子流的偏转、聚焦和成象规律的一门学科。它的基础是下列三项发现;
(一).J.J.Thomson(1872)证明了电子的存在;
(二).L.deBroglie(1923)关于物质的微粒、波动二象性的推论‘
(三).H.Busch(1926)发现了轴对称分布的电、磁场对带电粒子的透镜作用。
首先来讨论徕卡生物显微镜中的照明物质一—电子流。根据上述(一)(二)两项,我们可以把运动着的电子流看作一个电子波,它向电子运动的方向以匀速并随时间作正弦变化的方式前进。1927年D9v比on和Germer发现的电子衍射现象更确定无疑地用实验证实了电子的波动性,并进而测定验证了关系式,为了推算电子波长,我们假设质量为M、电荷为(一‘)的电子所具有的韧速为零。当其通过一个电势从o变到Yo的区域后,速度便变为?。因此电子的动量严和动能x分别为:zui后可以得出电子波长的表达式为:应该指出,对于高速运动的电子,其质量将随速度的增加而增加。例如加速电压yo=lookV时,电子质量特发生5%的改变。为此必须考虑电子质量的相对论修正。修正后的公式为:式中电子波长A的单位为M,相对论修正电压vL的单位持)。下面举例表示电子波长与加速电压的关系
V0(KV) | VR(KV) | A(NM) |
50 | 52.5 | 0.0053 |
80 | 86.5 | 0.0042 |
100 | 110 | 0.0037 |
120 | 134 | 0.0033 |
160 | 189 | 0.0029 |
200 | 239 | 0.0025 |
300 | 388 | 0.0020 |
从表中的数量级可以看出,徕卡显微镜电子波的确是一种比光波短得多的可用照明物质。
徕卡生物显微镜的另一必要部件就是能将电子束聚焦的透镜一电子透镜。为了定性说明其工作原理,可以采用一个员简单的例子,即由螺旋线圈绕制成的长空心圆柱,也称长螺线管。当这种线圈中通有电流时,就会在其中心轴附近产生近似均匀的磁场。根据有手定则可知,这种磁场是在沿抽(Z)方向的。当高速运动的电子(一‘)进入此场区后,就会受到磁场的kren檀力(歹)作用。它正比于电子速度与磁场强度的叉乘值,即万=一Mx万。进入磁场区的电子初速;。可分成二部分来讨论州=入席l。平行于磁场方向的速度分星办即5z,它与磁场的作用力为零,所以电子沿轴方向的速度不会发生变化。垂直于磁场方向的速度分量5L受到的磁场作用力,既垂直于此韧速分量的方向,又垂直于磁场的方向,因此它是一种均匀的向心作用力。zui终的效果是电子在沿韧前进的同时,还绕中心轴作匀速圆周运动,其空间轨迹是一条螺旋线。
徕卡显微镜可以证明由同一物点(产)发出的初速不同的电子,经一定距离后都将会聚在同一像点(Pf)。这就是磁透镜的雏型。应该强调指出的是碰透镜对高速运动的电子具有使其旋转并会聚(成像)的作用。均匀磁场中的电子轨迹。
徕卡生物显微镜中的电子透镜可以是静电式或(电)磁式的。为由多电极组成的静电透镜,对屏蔽及真空系统的要求较高,目前大多采用(电)磁透镜。只是根据不同部位处的不同要求透镜的设计和构造可有所不同。